The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter.
نویسندگان
چکیده
The Na+/Cl--dependent dopamine transporter (DAT) is critical in terminating dopaminergic transmission by removing the transmitter away from the synapse. Several lines of evidence suggest that transporter-interacting proteins may play a role in DAT function and regulation. In this report, using the yeast two-hybrid system, we have identified a novel interaction between DAT and the multiple Lin-11, Isl-1, and Mec-3 (LIM) domain-containing adaptor protein Hic-5. This association involves the N-terminal portion of the intracellular tail of DAT and the LIM region of Hic-5. In human embryonic kidney 293 cells, Hic-5 colocalizes with DAT at polarized sites and reduces DAT uptake activity through a mechanism involving a decrease in the cell-surface levels of the transporter. A fragment of Hic-5 containing the LIM domains is sufficient to bind DAT but lacks the ability to inhibit transporter activity. In addition, the LIM fragment prevents the effect of the full-length Hic-5 on DAT localization and function. In the brain, Hic-5 protein is expressed in the cerebral cortex, hippocampus, hypothalamus, cerebellum, and striatum, suggesting a role for this protein in the nervous system. The association of the endogenous Hic-5 and DAT proteins was confirmed biochemically by coimmunoprecipitation from brain striatal extracts. Moreover, immunostaining of rat midbrain neurons in culture revealed a presynaptic colocalization of Hic-5 and DAT. Because Hic-5 has been shown to interact with several signaling molecules, including the nonreceptor protein tyrosine kinases focal adhesion kinase and Fyn, this raises the possibility that this adaptor protein may link DAT to intracellular signaling pathways.
منابع مشابه
Serotonin-, protein kinase C-, and Hic-5-associated redistribution of the platelet serotonin transporter.
Emerging data indicate the existence of multiple regulatory processes supporting serotonin (5HT) transporter (SERT) capacity including regulated trafficking and catalytic activation, influenced by post-translational modifications and transporter-associated proteins. In the present study, using differential extraction and sedimentation procedures optimized for the purification of cytoskeletal an...
متن کاملCharacterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin.
Paxillin is a focal adhesion scaffolding protein which was originally identified as a substrate of the oncogenic tyrosine kinase, v-src. Paxillin has been proposed to be involved in regulation of focal adhesion dynamics. Two alternatively spliced mouse paxillin cDNAs were cloned and in the process, a paxillin-related protein, Hic-5, was also identified. Cloning and characterization of Hic-5 ind...
متن کاملHic-5, an adaptor-like nuclear receptor coactivator
In recent years, numerous nuclear receptor-interacting proteins have been identified that influence nuclear transcription through their direct modification of chromatin. Along with coactivators that possess histone acetyltransferase (HAT) or methyltransferase activity, other coactivators that lack recognizable chromatin-modifying activity have been discovered whose mechanism of action is largel...
متن کاملFunctional Interaction between Monoamine Plasma Membrane Transporters and the Synaptic PDZ Domain–Containing Protein PICK1
PDZ domain-containing proteins play an important role in the targeting and localization of synaptic membrane proteins. Here, we report an interaction between the PDZ domain-containing protein PICK1 and monoamine neurotransmitter transporters in vitro and in vivo. In dopaminergic neurons, PICK1 colocalizes with the dopamine transporter (DAT) and forms a stable protein complex. Coexpression of PI...
متن کاملEnigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation.
APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 16 شماره
صفحات -
تاریخ انتشار 2002